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Infinite-dimensional time vectors as background
building blocks of a space—time frame structure
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The convenient properties of cumulative probability density functions are used to
describe how sequences of infinite-dimensional time vectors can be generated from
them. It is also discussed how such a description can be connected with space-time
frames, while conserving a coherent connection related to the usual experimental scalar
measures of time.
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1. Introduction

In a previous paper [1], the classical point of view of time as a scalar
parameter was substituted by an N-dimensional time vector structure, follow-
ing somehow the spirit of an old idea borrowed from early quantum mechani-
cal field theory [2]. Classical time positive definite form demands, however, that
these time vectors, substituting scalar time, behave in some sense as the scalar
usual parameter and, in this manner; time vectors have been constructed in such
a way as belonging to a vector semispace [3]. A vector semispace is a vector
space defined over the positive definite real field, where the additive group is
taken instead as an additive semigroup [4], so zero and reciprocal element vectors
are not present in semispaces. Also, within this general framework, time reversal
structure could just be considered as a symmetric situation of the semispace time
vectors and, as such, there is no need to be further discussed, as it will have the
same structure present in usual time vectors positive definite directions, but with
a sign reversed reciprocal signature [9].
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If it is assumed that time vectors belong to some semispace, every one of
them can be generated by a vector pertaining to the space where the active semi-
space is contained. That is, just employing an inward matrix product structure [5],
one can simply write the generation of time vector semispace as

VteURT) c V(C) » 3z V(C): (z)z=t, (1)
this description just means that
t={t}Az={z} > VI:t; =z. (2)

This straightforward construction can be described in short by a generating sym-
bol [3]

Rz —t)={t= "z = z]*}. (3)

The generating symbol implicit algorithm, depicted in the previous definitions,
encompass any vector space and its attached semispace, including Hilbert space
constructs. The reader can recognize the generating symbol as the procedure of
quantum mechanical construction of the density function: p(r), associated to a
given state wave function, W(r). As it can be written, according to the generating
symbol definition adapted to functional spaces:

RW — p)={p= |V “4)

with the inward product squared module of equation (3) transformed into a sim-
ple product squared module.

Accordingly, to every time vector semispace there can be attached a gener-
ating vector space.

2. Extended functional time vectors

The success of substituting scalar time with time vector structure and the
possible definition of density functions in general Hilbert functional spaces by
means of the generating symbol (4), may suggest the possibility to employ den-
sity functions as time vector components or simply as time vectors by them-
selves. Indeed, probability density functions possess the adequate properties to
behave as time vectors, although within an infinite dimensional framework. In
this sense, time may be thought as possessing the structure belonging to a pos-
itive definite function. Nothing has to be a priori supposed about the nature of
the variables associated to the time density functions. Thus, infinite dimensional
time vector forms can be considered as the result of a non-linear transformation
of some variable set, which can be attached in turn to a complex system descrip-
tion; in a parallel way as quantum mechanical density functions are considered.
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Time measures shall be, then, associated to some manipulation performed
over time density, providing a positive definite scalar result. Such a possibility is
naturally included into the time density definition, as for instance integrals over
positive definite functions, even if weighted by positive definite operators, provide
the basis for a measure evaluation. As an application example of this possibility,
it is worth quoting the use of quantum mechanical density functions for the defi-
nition of quantum similarity measures [6].

Now, in order to define a possible practical framework for this time density
picture, there should be taken into account several details concerning the possi-
ble construction of vector spaces depending of such time structure.

3. Time density vectors and position space components

For this purpose, suppose a position vector x in an N-dimensional param-
eterized space, which will be used as a space-time frame. Furthermore, suppose
that the vector x components depend on different time elements taken provision-
ally as parameters, as it was previously defined [1]:

vx(t) € Vy(R) At € Uy (RT) = x(t) = {x; (1))} . (5

From this definition as above stated, there is only additionally needed in order to
have a starting infinite-dimensional time structure possibility, to consider every
time vector component as a time density function t(r) of some variable set {r},
which can be attached, as already commented, to some complex system descrip-
tion. It can be written, for example,

Vi={t} > t; =1 () € Uy (R+) , (6)

by assigning to each vector component a different time density function. A more
classical situation, while keeping this time density structure at a minimal pace,
may consist in considering all time vector density components equal to a unique
density function: p(r), that is,

VI 7 (r) = p@r) € U (RY) = x(t) = {x;(p(r)} vt = p(0)1, (7)

where the symbol 1 is taken as the unity vector, which acts as the neutral element
in inward matrix products. It is used here to express an N-dimensional array
whose components are the scalar 1.

Still, such time density picture may not be completely satisfactory from the
point of view of our perception about the nature of time progression, but is a
device defined just to obtain a positive definite time vector structure. And so,
there may be needed some additional detailed analysis around the possibility that
time density reflects such a property attached to the progressive nature of time
measures too.
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4. Time density and time progression measures

As it has been commented before, time density functions, associated to a
mathematical structure such as probability density functions, first of all should
be able to be defined within a set of generating functions belonging to some
Hilbert space. Then, due to this framework, any generated time density p(r), cor-
responding to the generating symbol R (¥ — p) can be also normalized in the
Minkowski sense, as

) =/ p@dr =1, ®)
D

because one can use the usual Euclidean norm of the generating Hilbert space
function:

(p) =/D|\If<r)|2dr= (W/v) =1, )

as it is customarily done in basic well-known quantum mechanical theory [7].
In both expressions (8) and (9), D corresponds to an appropriate normalization
domain of the underlying system variable set r.

Moreover, as it is usually done in theoretical statistics [8], a cumulative
probability density can be also defined, using as basic density any normalized
density function, p(r), like in the present example:

x<s>=fS = 1 € 0.1, (10)

where S is an appropriate subdomain of the norm defining domain D; while the
new variable vector set {s} can be built up as corresponding to the upper limit of
the subdomain S, whenever the lower limit is kept constant over the integration
sequence.

Constructed in this way, the positive definite function x(s) can be easily
associated to a sequence of measures, yielding in turn a sequence of increas-
ing positive definite scalar values, lying in the closed interval [0,1], whenever a
sequence of increasing subdomain volumes is employed, that is,

SoCS C---CSyv—> x(S0) <x(s1)<---<yx(sy). (11)

Thus, the sequence of cumulative probability density measures {x (s;)}, conve-
niently attached to an origin value and scaled, can be put into a one to one
correspondence to an increasing sequence of scalar time measures, which can be
written as

o<t <---<ty. (12)
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This simple property permits to state a fundamental property of infinite
dimensional time structures, as follows. Given some time density function p(r),
Minkowski normalized in the sense of equation (8) over some system variable
domain D, then any positive definite integral function x(s) value sequence, as
defined in equation (10), representing a cumulative probability within some sub-
domain § C D sequence, can be attached to a sequence of time measures.

The proposed time vector structure in parameterized position spaces of
arbitrary dimension can be, at the light of the last discussion, redefined by means
of the cumulative probability functions as

Vt={t;} = t; = x; (51) € Uss (RT) A xs (81) = / 77 (rp) dry, (13)
S$1CD;
in such a way that the time vector argument t, acting as a parameter set within
the position vector x(t), has a proper behavior; as each of its elements can be
associated to an ordered set of time measures, which can be considered, when
holding well-defined values, as an element of some N-dimensional time vector
semispace.

5. Time measures in /N-dimensional time vectors

Although the measure of time in the proposed infinite dimensional rep-
resentation has been previously studied and employed to construct appropriate
N-dimensional arrays of time sequences, to be further included as parameters in
the space position N-dimensional vectors of a space-time frame, it has not yet
been discussed at all how this time structure can be connected to the usual scalar
time measurements. It is interesting to study this question, as it was not done in
the preceding study [1], where just the most immediate consequences of a non
scalar time structure were mostly analyzed.

Due to the definition of the N-dimensional time vector as given in equa-
tion, based on the cumulative probability density functions, picking up two time
vectors in a possible sequence of these arrays, t; and t; say, then the following
sums of elements can be easily obtained, which are coincident with the time vec-
tors Minkowski norms:

0 = (t;) > SO A0, =(t;) > SO,

where the symbols S(0) C Uy (R*) stand for the collection of vectors of the
semispace Uy (R*), possessing the elements sum equal to the value 6, and con-
stituting in this way a 0-shell [9].

With this shell definition in mind, let us suppose that the pair of vector
Minkowski norms are related by the inequality: 8; < 6,. Then, at least, there
exists an element of the vector t;, which will be greater than an element corre-
sponding to the array t;. In this situation one can say that the vector t; precedes
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t; and this situation can be depicted as: t; < t;. Thus, a sequence of time arrays:
{tp}, acting as parameters in some position vector attached sequence, possessing
a sequence of #-shell values: ® = {0p}, ordered in the preceding sense, as stated
above, can be associated into a one to one correspondence, to an ordered scalar
time sequence: & = {£p}, say, by shifting and scaling the Minkowski norm val-
ues:®.

Proceeding in this way, however, one can see how several essentially inde-
pendent time vectors can produce an equivalent Minkowski norm. This may be
due to the fact that scalar time measures, as defined by the time vector Min-
kowski norms, may be degenerate when applied to some strictly different vec-
tors. However, in this case one can consider then the appearance of a scalar time
simultaneity situation, associated to essentially different and independent time
vector descriptors.

It can be concluded, in consequence, that Minkowski norms of time vector
ordered sequences, acting as parameters into N-dimensional space-time frames,
can be used as scalar time measures, providing information on how time evolves
at the usual experimental observable scale for some points located within space—
time frames. Objects and object sets can be described in space—time in this way,
without apparently contradict the usual perception and measure of scalar time.

6. Conclusions

Time structure can be defined possessing an infinite-dimensional back-
ground as provided by cumulative probability density functions. Semispace time
structure can be set with arbitrary dimensionality and considered as generated
throughout inward matrix products of vectors, belonging to well-defined vector
spaces where the time semispace belongs, in a parallel way as quantum density
functions are generated. Sets of such positive definite probability density func-
tions can be used as arguments, providing the time parameter values, within the
space vectors constructed in N-dimensional space-time frames. Scalar time mea-
sures can be easily obtained in order to establish the connection between this
multidimensional time structure and the usual observed progression of experi-
mental scalar time measures.
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